Summary

Feasibility Studies for the ENC@FAIR Project

Jörg Pretz

Physikalisches Institut, Universität Bonn

Milos, September 2009

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

• The ENC fair project Potential compared to running fixed target experiment (COMPASS)

Э

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels
 - Gluon Helicity

quark helicity, structure functions g_1, g_2

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels
 - Gluon Helicity quark helicity, structure functions g₁, g₂
 - Generalized Parton Distributions: DVCS

イロト イヨト イヨト

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels
 - Gluon Helicity quark helicity, structure functions g₁, g₂
 - Generalized Parton Distributions: DVCS
 - Transversity & Transverse Momentum Distributions (TMD)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels
 - Gluon Helicity quark helicity, structure functions g_1, g_2
 - Generalized Parton Distributions: DVCS
 - Transversity & Transverse Momentum Distributions (TMD)
 - Factorization in hadronization process

イロト イヨト イヨト

- The ENC fair project Potential compared to running fixed target experiment (COMPASS)
- Physics Channels
 - Gluon Helicity quark helicity, structure functions g_1, g_2
 - Generalized Parton Distributions: DVCS
 - Transversity & Transverse Momentum Distributions (TMD)
 - Factorization in hadronization process
- Summary & Outlook

イロト イヨト イヨト

ENC @ FAIR project

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

э

Summary

FAIR-Facility & PANDA detector

Summary

FAIR-Facility & PANDA detector

< ロ > < 回 > < 回 > < 回 > < 回 > <

Э

The ENC@FAIR project

- add a 3 GeV e^+/e^- accelerator to the already planed 15 GeV HESR (High Energy Storage Ring) for \bar{p} , p
- e^- and p polarized ($P \approx 80\%$)
- $\mathcal{L} > 10^{32}/\text{cm}^2/\text{s}$
- Use (modified) PANDA detector
- Constraints from accelerator side: no acceptance from 5 to 25 and 155 to 175 degrees

The ENC@FAIR project

- add a 3 GeV e^+/e^- accelerator to the already planed 15 GeV HESR (High Energy Storage Ring) for \bar{p} , p
- e^- and p polarized ($P \approx 80\%$)
- $\mathcal{L} > 10^{32}/\text{cm}^2/\text{s}$
- Use (modified) PANDA detector
- Constraints from accelerator side: no acceptance from 5 to 25 and 155 to 175 degrees

Experiment	JLab(12 GeV)	HERMES	ENC	COMPASS
$s/{ m GeV^2}$	23	50	180	300
$\mathcal{L}/(1/{ m cm}^2/{ m s})$	$pprox 10^{38}$	$pprox 10^{32}$	$pprox 10^{32}$	$pprox 10^{32}$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

ENC @ FAIR

Physics channels

Summary

$Luminosity \rightarrow FOM$

More interesting FOM:

$$\mathsf{FOM} = (\mathsf{diluting factors})^2 \, \mathcal{L}$$

diluting factors:	beam polarization	P_B
	target polarization	P_T
	target dilution factor	f
	reconstruction efficiency	
	and purity	r

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

Diluting Factors

	COMPASS	collider	
P_T	0.5 ^{a)} (0.8) ^{b)}	0.8	
f	$0.4^{a)} (0.17)^{b)}$	1	
P_B	0.8	0.8	

a) for ⁶LID target
 b) for NH₃ target

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

< □ > < □ > < □ > < □ > < □ > < □ > = □

Summary

Diluting Factors

	diluting factor		ratio
	COMPASS	ENC	
unpolarized	1	1	1
single spin target $(P_T f)^2$	0.04	0.64	16 ^{a)} (32 ^{b)})
double spin asymmetries $(P_T f P_B)^2$	0.026	0.41	16 ^{a)} (32 ^{b)})
reconstruction of hadronic			?
final state			
mass resolution	\odot	\odot	
displaced vertices	\odot	\odot	
target fragmentation	\odot	\odot	

^{a)} for ${}^{6}LID$ target ${}^{b)}$ for NH₃ target

(日) (同) (E) (E) (E)

Summary

Diluting Factors

	diluting factor		ratio
	COMPASS	ENC	
unpolarized	1	1	1
single spin target $(P_T f)^2$	0.04	0.64	16 ^{a)} (32 ^{b)})
double spin asymmetries $(P_T f P_B)^2$	0.026	0.41	16 ^{a)} (32 ^{b)})
reconstruction of hadronic			?
final state			
mass resolution	\odot	\odot	
displaced vertices	\odot	\odot	
target fragmentation	\odot	\odot	

 $^{a)}$ for 6 LID target $^{b)}$ for NH₃ target

Huge potential for polarization observables!

Summary

э

Kinematic region covered

Jörg Pretz Feasibil

Summary

Kinematic region covered

- Playground in $Q^2 - y$ plane $(Pol(\gamma^*) \approx y)$
- Blue band: acceptance hole from 5-25°

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

ロト 《圖》 《트》 《트》

э

Summary

Kinematic region covered

- Playground in $Q^2 - y$ plane $(Pol(\gamma^*) \approx y)$
- Blue band: acceptance hole from 5-25°
- Higher Q^2_{min} for μ

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

ロト 《圖》 《트》 《트》

э

Gluon Helicity

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

< □ > < □ > < □ > < □ > < □ > < □ > = □

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

How to tag Photon -Gluon- Fusion sub-process $\gamma^* {\it g} \to q \bar{q} \; ?$

How to tag $\gamma^* g \rightarrow q \bar{q}$?

Cleanest way: Look at charmed particles resulting from the fragmentation of the process $\gamma^*g \rightarrow c\bar{c}$:

- no intrinsic charm,
- no charm quarks in string fragmentation
- If both charmed particles are reconstructed, one has access to x_g

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

Summary

Results on Δg from DIS

- Data show small values of ∆g/g at x_g ≈ 0.1
- confirmed by indirect measurements
 - Scaling violation of *g*₁^{p,n,d} structure function
 - *p p p s*cattering at RHIC
- all measurements are concentrated around x_g = 0.1, little is known about Δg(x_g)

・ロン ・回と ・ヨン ・ヨン

Results on Δg from DIS

- Data show small values of $\Delta g/g$ at $x_g \approx 0.1$
- confirmed by indirect measurements
 - Scaling violation of *g*₁^{p,n,d} structure function
 - *pp* scattering at RHIC
- all measurements are concentrated around x_g = 0.1, little is known about Δg(x_g)
- only COMPASS point is obtained with the (least model dependent) open charm method
- this result is obtained in pprox 200 days of running

Summary

kinematic distributions $ep \rightarrow e'D^0X$

distribution of events in $Q^2 - y$ plane from PYTHIA MC

scattered electron: θ_e loss due to angle cut $\approx 20\%$

・ロト ・同ト ・ヨト ・ヨト

Feasibility Studies for the ENC@FAIR Project

Summary

kinematic distributions

momentum/average decay path of $D^0\,$

gluon momentum fraction range covered

Lower limit:

$$x_g(min) = \frac{4m_c^2}{s}$$

Э

Summary

QCD analysis on $\Delta g(x)$

- largest error in the region $x_g < 0.1$
- RHIC covers and will cover $0.01 < x_g < 0.2$
- on the other hand: all spin effects are observed at large x

Qualitative differences

- In COMPASS only one of the two *D* mesons produced in a event is reconstructed
 - \Rightarrow momentum fraction x_g of gluon cannot be reconstructed
- Collider: Possibility to reconstruct both *D* mesons in one event ⇒ better access to gluon momentum fraction x_g
- \Rightarrow measurement of $\Delta g/g(\mathbf{x_g})$ is possible and not only

Summary

Better Reconstruction of x_g

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

(ロ) (四) (日) (日) (日)

Summary

D^0 reconstruction

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

D^0 reconstruction

	COMPASS S:B	collider S:B	
D^0	1:10	4:1	
D^*	1:1	1:0	

D^0 reconstruction

	COMPASS S:B	collider S:B	Gain in FOM*
D^0	1:10	4:1	11
D^*	1:1	1:0	2.6

In COMPASS D^0 and D^* have approximately the same FOM: \Rightarrow total gain $\approx \frac{11+2.6}{2} =$ **7**

 * for the same number of signal events

・ロト ・同ト ・ヨト ・ヨト

D^0 reconstruction

- COMPASS has a solid state target:
 - $\Rightarrow D^0$ decay vertex cannot be resolved from main vertex
 - ullet \Rightarrow mass resolution deteriorated due to multiple scattering
- Additional gains at collider:
 - from number of reconstructed D mesons (COMPASS target has ≈ 1 nuclear interaction length)
 - considering more decay channels $(D^0 \rightarrow K^- \pi^+ \text{ has only 4\% BR})$

・ロン ・回と ・ヨン・

Summary $\Delta g(x)$

- Increase of FOM compared to fixed target experiment by two orders of magnitude possible (16 from f P_T P_B, > 7 from D⁰ reconstruction)!
- Not only increase in FOM but also qualitative improvements (reconstruction of x_g)
- in parallel measurement of helicity distributions

A D A A B A A B A A B A

Deep Virtual Compton Scattering

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

・ロン ・回と ・ヨン ・ヨン

э

Summary

Deep Virtual Compton Scattering

Studies done by D. Kang, W. Gradl & M. Fritsch (>> (=> (=>)

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

Summary

Cross Section

Bethe-Heitler (BH) contributes as background

$$d\sigma = (d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + e_{\mu}a^{BH} \mathcal{R}e(A^{DVCS})) \times \cos(n\Phi) + (P_{\mu}d\sigma^{DVCS}_{pol} + e_{\mu}P_{\mu}a^{BH} \mathcal{I}m(A^{DVCS})) \times \sin(n\Phi)$$

 e_{μ} : lepton charge, P_{μ} : lepton polarization, $A \propto \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon}$, $\Phi : \angle (I, I' - \text{plane}, \gamma, p - \text{plane})$

Exploit angular dependence, $\sigma^{e^+} - \sigma^{e^-}$, $\sigma^{\uparrow} - \sigma^{\downarrow}$,

 \Rightarrow access to various contributions

Summary

Deep Virtual Compton Scattering

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

Reconstruction efficiency

using PANDA setup

particle	efficiency	resolution $\delta p/p$	resolution $\delta \theta / heta$
е	83%	< 2%	< 2%
γ	93%	< 2%	< 5%
р	64%	< 1%	< 10%

combined efficiency 43%

(日) (同) (E) (E) (E)

Kinematic range

Jörg Pretz

Feasibility Studies for the ENC@FAIR Project

Summary DVCS

- already with present PANDA setup good acceptance
- further studies needed (ensure exclusivity, ...)

・ロン ・聞と ・ほと ・ほと

Transversity & TMDs

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

Э

Transversity & TMDs

- Same (or even less) requirements than for Δg measurements
- very active field (see parallel workshop)

nucleon quark	unpol.	long.	trans.
unpol.	f_1		f_{1T}^{\perp}
long.		g_1	g _{1T}
trans.	h_1^\perp	h_{1L}	h_1, h_{1T}^\perp

- Table shows all 8 twist 2 parton distributions
- 4 of them appear for transversally polarized nucleon

Side remark: TMDs

Sivers:
$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$

Boer-Mulders: $h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$

connection to Drell-Yan program at FAIR (PAX)

(日) (同) (E) (E) (E)

Factorization in fragmentation process

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

・ロット (雪) (山) (日)

Fragmentation

Just two examples:

FIG. 3: The strange parton distribution xS(x) from the measured HERMES multiplicity for charged kaons evolved to $Q_0^2 = 2.5 \text{ GeV}^2$ assuming $\int \mathcal{D}_S^K(z) dz = 1.27 \pm 0.13$. The solid curve is a 3-parameter fit for $S(x) = x^{-0.924} e^{-x/0.0404} (1-x)$, the dashed curve gives xS(x) from CTEQ6L, and the dot-dash curve is the sum of light antiquarks from CTEQ6L.

- 4 ⊒ >

Fragmentation

Summary

Spin dependence in Fragmentation process

$$A^{h} = \frac{\sum e_{q}^{2} \Delta q(x) D_{q}^{h}(z)}{\sum e_{q}^{2} q(x) D_{q}^{h}(z)}$$

・ロン ・聞と ・ほと ・ほと

Э

Spin dependence in Fragmentation process

$$A^{h} = \frac{\sum e_{q}^{2} \Delta q(x) D_{q}^{h}(z) + q(x) \Delta D_{q}^{h}(z)}{\sum e_{q}^{2} q(x) D_{q}^{h}(z) + \Delta q(x) \Delta D_{q}^{h}(z)}$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

- additional term in denominator can be neglected $(\Delta q \Delta D \ll qD)$
- term in numerator is dangerous because ΔqD maybe of same order as $q\Delta D$

 M. Glück & E. Reya hep-ph/0203063 A. Kotzinian Eur.Phys.J.C44:211,2005
 e-Print: hep-ph/0410093

Fragmentation

All this is best studied at a collider at moderate energy!

・ロン ・聞と ・ほと ・ほと

Э

Fragmentation

All this is best studied at a collider at moderate energy!

- possible violation of factorization
- detection of target fragmentation region

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary & Outlook

Jörg Pretz Feasibility Studies for the ENC@FAIR Project

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Э

(+)~

Physics channels

Summary

 $q \rightarrow h$

Summary & Outlook

A polarized electron-nucleon-collider with
$$\label{eq:loss} \begin{split} \mathcal{L} > 10^{32}/\text{cm}^2/\text{s and} \\ s \approx 200 \ \text{GeV}^2 \\ \text{has great potential to make a big step} \\ \text{in understanding the partonic structure of} \\ \text{the nucleon.} \end{split}$$

TMDs

 $\Delta q_T(x)$

(ロ) (回) (E) (E) (E)

Jörg Pretz

・ロ・・ (日・・ (日・・ (日・))

э

Summary

 $\theta_{e'}$

scattered electron

ヘロト ヘロト ヘヨト ヘヨト

æ

Summary

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

(日) (同) (E) (E) (E)

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^{\uparrow}}(z) = D^h_{q^{\downarrow}}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

• one sums over spin states of hadron h

・ロン ・聞と ・ほと ・ほと

Spin Dependence of Fragmentation Functions

$$D^h_q(z)
ightarrow D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^{\uparrow}}(z) = D^h_{q^{\downarrow}}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

• one sums over spin states of hadron $h \checkmark$

・ロト ・同ト ・ヨト ・ヨト

э

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^{\uparrow}}(z) = D^h_{q^{\downarrow}}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

- one sums over spin states of hadron $h \checkmark$
- fragmentation process does not violate parity

・ロト ・同ト ・ヨト ・ヨト

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^\uparrow}(z) = D^h_{q^\downarrow}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

- one sums over spin states of hadron $h \checkmark$
- \bullet fragmentation process does not violate parity \checkmark

・ロト ・同ト ・ヨト ・ヨト

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^\uparrow}(z) = D^h_{q^\downarrow}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

- one sums over spin states of hadron $h \checkmark$
- ullet fragmentation process does not violate parity \checkmark
- if fragmentation is independent of target remnant

・ロン ・回と ・ヨン・

Spin Dependence of Fragmentation Functions

$$D^h_q(z)
ightarrow D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^\uparrow}(z) = D^h_{q^\downarrow}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

- one sums over spin states of hadron $h \checkmark$
- \bullet fragmentation process does not violate parity \checkmark
- if fragmentation is independent of target remnant ?

$$\begin{array}{ll} D_{q\uparrow}^{h} = \sum_{\lambda_{h}} \langle q, \uparrow & |T|h, \lambda_{h} \rangle = \\ \sum_{\lambda_{h}} \langle q, \downarrow & |T|h, \lambda_{h} \rangle = D_{q}^{h} \end{array}$$

・ロト ・回ト ・ヨト

Spin Dependence of Fragmentation Functions

$$D^h_q(z) o D^h_q(z) + \Delta D^h_q(z)$$

$$\Delta D^h_q(z) = D^h_{q^{\uparrow}}(z) - D^h_{q^{\downarrow}}(z)$$

$$D^h_{q^\uparrow}(z) = D^h_{q^\downarrow}(z)$$
, i.e. $\Delta D^h_q = 0$ if:

- one sums over spin states of hadron $h \checkmark$
- ullet fragmentation process does not violate parity \checkmark
- if fragmentation is independent of target remnant ?

$$\begin{array}{l} D_{q\uparrow}^{h} = \sum_{\lambda_{h}} \langle q, \uparrow, \text{tgt rem.} | T | h, \lambda_{h}, \text{hads.} \rangle = \\ \sum_{\lambda_{h}} \langle q, \downarrow, \text{tgt rem.} | T | h, \lambda_{h}, \text{hads.} \rangle = D_{q\downarrow}^{h} \end{array}$$

・ロン ・回と ・ヨン ・ヨン